Table des matières

P	r éamb Bibli		ie	xv xxi
Ι		applica	chisme entre les tours de Lubin-Tate et de Drinfeld tions cohomologiques cent Fargues	
In	trodu	ction .		3
I	Déce	ompositi	ion cellulaire de la tour de Lubin-Tate	
	I.1	Hypot	chèses et notations	10
		I.1.1	Espaces	11
		I.1.2	Action	12
		I.1.3	Scindage de l'espace de Rapoport-Zink	12
		I.1.4	Donnée de descente de Rapoport-Zink	12
		I.1.5	Polygone de Newton des points de torsion	13
	I.2	Applie	cation des périodes	15
		I.2.1	Définition	15
		I.2.2	Interprétation en termes du cristal \mathcal{O} -extension	
			vectorielle universelle	17
		I.2.3	La donnée de descente sur l'espace des périodes	18
		I.2.4	Formules explicites pour l'application des périodes	
			et applications	18
	1.3	Doma	ine fondamental de Lafaille/Gross-Hopkins	21
		I.3.1	Lien entre le domaine fondamental et les points $C.M$	26
	I.4	Génér	alisation d'un théorème de Gross-Hopkins	26
	I.5	L'espa	ce des paramètres de la décomposition cellulaire	30
	I.6	Les ce	llules rigides en niveau fini	31
		I.6.1	Digression philosophique	31
		I.6.2	Structures de niveau	31

		I.6.3	Fonctorialité de Hecke des $\mathcal{M}_{\Lambda,K}$	32
		I.6.4	Les cellules	34
		I.6.5	Bord des cellules	35
		I.6.6	Donnée de recollement	36
		1.6.7	Réécriture en termes des arrêtes orientées de l'immeuble .	37
	I.7	Décom	position cellulaire des espaces rigides en niveau fini	37
	I.8	Modèle	es entiers des cellules	39
		I.8.1	Niveau fini	39
		I.8.2	Niveau infini	44
		I.8.3	Donnée de descente	45
	I.9	Le sche	éma formel recollé en niveau fini	45
	I.10	Le sche	éma formel en niveau infini	46
	I.11	Décom	aposition cellulaire écrasée en niveau fini	47
	1.12	Une au	ntre décomposition cellulaire	48
A	Norn	nalisé d'	un schéma formel dans une extension de sa fibre générique	
	A.1	Généra	alités sur les espaces rigides	49
	A.2	Schéma	as formels normaux	51
	A.3	Norma	disé dans une extension de la fibre générique	52
В	Mod	ules de l	Dieudonné et cristaux des \mathcal{O} -modules π -divisibles	
	B.1	Un len	nme sur les F -cristaux \mathcal{O} -équivariants	54
	B.2	Struct	ure du cristal de Messing d'un \mathcal{O} -module π -divisible	56
	B.3	O-exte	ension vectorielle universelle d'un \mathcal{O} -module π -divisible	56
	B.4	Cristal	l de Messing généralisé et théorie de la déformation	59
	B.5	Expon	entielle π -adique	60
		B.5.1	\mathcal{O} -puissances divisées ([17] section 10, [11] section 7)	60
		B.5.2	Logarithme	61
		B.5.3	Exponentielle	63
	B.6		sion du cristal de Messing généralisé aux ssances divisées	66
	B.7		ie de la déformation des \mathcal{O} -modules π -divisibles	69
	B.8	Théori	ie de Dieudonné "classique" des dules π -divisibles	69
143	bliomy	anhia		771

Table des matières vii

II		morphis veau de	me entre les tours de Lubin-Tate et de Drinfeld s points	
	II.1		le Hodge-Tate des groupes p -divisibles dans le cas infiniment	
		ramifié		7
		II.1.1	Décomposition de Hodge-Tate d'un \mathcal{O} -module π -divisible	80
	II.2		étés particulières de l'application de Hodge-Tate pour les sp-divisibles formels de dimension 1 8	31
		II.2.1	Les périodes de Hodge-Tate vivent dans l'espace	31
		II.2.2		2
		II.2.3	, 1	34
	II.3			5
	11.0	II.3.1		6
		II.3.2		66
		II.3.3	-	7
		II.3.4	-	88
	II.4		· · · · · · · · · · · · · · · · · · ·	0
	II.5		, ,,	1
	II.6	_	· · · · · · · · · · · · · · · · · · ·	2
	11.0	II.6.1	-	2
		II.6.2		2
	$\Pi.7$		es descriptions des points de la tour de Lubin-Tate	_
	11.,			3
		II.7.1	Description de $\mathcal{M}^{\mathcal{LT}}_{\infty}(K)$ en termes de modules	3
		II.7.2	Description de $\mathcal{M}^{\mathcal{LT}}_{\infty}(K)$ uniquement en termes	
				4
		II.7.3		5
	II.8		es descriptions des points de la tour de Drinfeld	
				96
		II.8.1		6
		II.8.2	Description de $\mathcal{M}_{\infty}^{\mathcal{D}r}(K)$ uniquement en termes	. 7
		TI O O		7
	TTO	II.8.3	3 00 ()	8
	II.9	•	<u>*</u>	8
		II.9.1	L'application $\mathcal{M}^{\mathcal{D}r}_{\infty}(K) \longrightarrow \mathcal{M}^{\mathcal{L}T}_{\infty}(K)$	
		II.9.2	Les deux applications sont inverses l'une de l'autre 10	
		II.9.3	Retracage des actions	
		11 9 4	DELIZIONE DES ACIONS	

		II.9.5	Bijection entre les points des espaces de Berkovich associés	103
	TT 10	Thedre	tion en termes de matrices de périodes	103
			orphisme conserve le degré	107
			nt de vue différent sur la bijection	109
	11.12	Un pon II.12.1	Identification de $K^n woheadrightarrow K^n/\mathrm{Fil}_H$ avec l'application	103
		11.12.1	de Hodge-Tate de G^D	110
		II.12.2	Identification de $K^n \to K^n/\mathrm{Fil}_G$ avec l'application	110
		11.14.4	de Hodge-Tate de H^D	111
		II.12.3	L'application $\mathcal{M}^{\mathcal{D}r}_{\infty}(K) \longrightarrow \mathcal{M}^{\mathcal{L}T}_{\infty}(K)$	112
			L'application $\mathcal{M}^{\mathcal{LT}}_{\infty}(K) \longrightarrow \mathcal{M}^{\mathcal{D}r}_{\infty}(K)$	115
		II.12.5	Les deux applications sont inverses l'une de l'autre	116
\mathbf{C}	Dánia	dog onti	Anna dag grannag a divigibleg	
U	C.1		ères des groupes p -divisibles es p -divisibles sur les anneaux d'entiers de corps	
	U.1	_	chimédiens	118
	C.2		mes de comparaison	119
	0.2	C.2.1	Le déterminant des périodes divisé par $2i\pi$ est	113
		C.2.1	une unité p-adique	121
			· -	
Bi	bliogra	aphie .		130
H	I L'iso	morphis	me entre les tours de Lubin-Tate et de Drinfeld :	
	démo	nstratio	n du résultat principal	
	III.1		tiole du côté Drinfeld	139
	III.2	Constr	uction du morphisme $\widetilde{\mathfrak{X}}_{\infty} \longrightarrow \widehat{\Omega}$	142
		III.2.1	Définition de l'application de Hodge-Tate	
			sur une cellule de \mathfrak{X}_{∞}	142
		III.2.2	Rappels de quelques résultats de [9] sur l'application	
			de Hodge-Tate dans le cas d'un point	144
		III.2.3	Quelques rappels sur le schéma formel	
		TTY	de Deligne-Drinfeld	145
		III.2.4	Sur le conoyau de l'application de Hodge-Tate	150
		III.2.5	Éclatement de la cellule et construction du morphisme	1 - 1
		TITOC	de la cellule éclatée vers $\widehat{\Omega}$	151
	TTT O	III.2.6	Recollement des morphismes sur les cellules	153
	III.3		uction du morphisme $\widetilde{\mathfrak{X}}_{\infty} \longrightarrow \mathcal{Y}_{\infty}$	157
		III.3.1	Étude des normalisés de $\widehat{\Omega}$ dans la tour de Drinfeld	157
		III.3.2	Définition modulaire de \mathcal{Y}_{∞}	160
		III.3.3	Sur la suite de Hodge-Tate en niveau infini	161
		III.3.4	Construction d'éléments dans le module de Tate	120
		TIT OF	du \mathcal{O}_D -module formel spécial tiré en arrière sur \mathfrak{X}_{∞}	163
		III.3.5	Construction du morphisme	166

Table des matières ix

		III.3.6	Un remède au canular	168
		III.3.7	Construction du morphisme	170
	III.4	Constr	uction du morphisme $\widehat{\widetilde{\mathcal{Y}}}_{\infty} \longrightarrow \widehat{\mathbb{P}}^{n-1} \ldots \ldots$	171
		III.4.1	Applications de Hodge-Tate	172
		III.4.2	Éclatements et conoyau de l'application de Hodge-Tate .	173
		III.4.3	Construction du morphisme $\widetilde{\mathcal{Y}}_{\infty} \longrightarrow \widehat{\mathbb{P}}(\mathbb{D}(\mathbb{H}))$	175
	III.5	Relèver	ment du morphisme $\widetilde{\mathcal{Y}}_{\infty} \longrightarrow \widehat{\mathbb{P}}^{n-1}$ vers	
		une cel	lule de l'espace de Lubin-Tate	177
		III.5.1	Éclatement équivariant de l'espace projectif formel	177
		III.5.2	Tiré en arrière de l'éclatement de l'espace projectif	
			vers $\hat{\mathcal{Y}}_{\infty}$	178
		III.5.3	Relèvement vers la cellule \dots	179
	III.6	Constru	uction du morphisme $\widetilde{\widetilde{\mathcal{Y}}}_{\infty} \longrightarrow \mathfrak{X}_{\infty} \ \ldots \ldots \ldots$	179
		III.6.1	Caractérisation modulaire de \mathfrak{X}_{∞}	179
		III.6.2	Sur la suite de Hodge-Tate en niveau infini	181
		III.6.3	Construction d'éléments dans le module de Tate du groupe	
			de Lubin-Tate universel tiré en arrière sur $\widetilde{\widetilde{\mathcal{Y}}}_{\infty}$	181
		III.6.4	Construction du morphisme de $\widetilde{\widetilde{\mathcal{Y}}}_{\infty}$ vers \mathfrak{X}_{∞}	184
	III.7	Constru	action de l'isomorphisme	185
		III.7.1	De nouveaux éclatements	186
		III.7.2	Retour aux suites de Hodge-Tate en niveau infini	188
		III.7.3	Démonstration du théorème principal	190
D	Com	oléments	sur les schémas formels π -adiques	
	D.1		es lemmes d'algèbre π -adique	193
	D.2		s sur les schémas formels π -adiques	194
	D.3		smes affines	194
	D.4	~	projective dans la catégorie des schémas formels π -adiques	195
	D.5		isation dans la fibre générique	195
	D.6		tation de la normalisation dans la fibre	
		génériq	ue et du passage à la limite projective	197
	D.7	Éclaten	nents formels admissibles	198
		D.7.1	Définition et premières propriétés	198
		D.7.2	Adhérence "schématique" de la fibre générique	199
		D.7.3	Transformée stricte	200
		D.7.4	Commutation à la limite projective	201
Bil	bliogra	phie		201
	G			

x Table des matières

ΙV	Comp	paraison	de la cohomologie des deux tours	
	IV.1	Schéma	is formers a darques	211
		IV.1.1		212
		IV.1.2	Morphismes topologiquement de type fini	212
		IV.1.3	Morphismes topologiquement de présentation finie	213
		IV.1.4	Morphismes affines	213
		IV.1.5	Morphismes finis	214
		IV.1.6	Morphismes topologiquement plats	214
		IV.1.7	Limite projective dans la catégorie des schémas	
			formels π -adiques	215
		IV.1.8	Adhérence "schématique" de la fibre générique	215
		IV.1.9	Éclatements formels admissibles	217
	IV.2	La topo	ologie des ouverts admissibles	220
		IV.2.1	La catégorie des ouverts admissibles	220
		IV.2.2	La topologie et le topos admissible	221
		IV.2.3	Le topos admissible	222
		IV.2.4	Topos limite projective contre topos total	223
		IV.2.5	Fonctorialité de la topologie et du topos admissible	225
		IV.2.6	Commutation des topos admissibles à la	
			limite projective	226
	IV.3	Le poir	nt de vue spectral sur la topologie admissible	231
		IV.3.1	Rappels sur les espaces spectraux	231
		IV.3.2	Prétopologie quasicompacte sur les espaces spectraux	
			et passage à la limite projective	231
		IV.3.3	Application au topos admissible	233
		IV.3.4	Description de l'espace $ \mathfrak{X}^{rig} $ comme espace de Zariski-	
			Riemann : le point de vue de Huber et Fujiwara	233
		IV.3.5	Ouverts surconvergents et espace analytique	
	****		de Berkovich	238
	IV.4		des morphismes finis localement libres	239
		IV.4.1	Morphismes finis localement libres	239
		IV.4.2	Morphismes finis localement libres rig-étales	241
		IV.4.3	Rigidité	243
		IV.4.4	Décomplétion des schémas formels finis localement	0.44
	*** *	ń. 1	libres rig-étales	246
	IV.5		d'une certaine catégorie de morphismes rig-étales	249
		IV.5.1	Définitions	249
		IV.5.2	Les morphismes de type (\mathcal{E}) engendrent la topologie	or (
		TV = 0	étale des espaces rigides usuels	250
		IV.5.3	Rigidité	251
		IV.5.4	Décompletion	25

Table des matières xi

IV.6	Le top	os rig-étale d'un schéma formel π -adique quasicompact	252
	IV.6.1	Sur un point concernant les topologies	
		de Grothendieck	252
	IV.6.2	Définitions	253
	IV.6.3	Lien entre les sites $\mathfrak{X}_{\mathcal{E}-\mathrm{rig-\acute{e}t}}$ et $\mathfrak{X}_{\mathrm{rig-\acute{e}t}}$	
		pour \mathfrak{X} admissible	254
	IV.6.4	Le théorème principal sur la décomplétion des topos rig-étales	255
IV.7	Le tope	os rig-étale d'un schéma formel π -adique	
		asicompact	257
	IV.7.1	Le topos	257
	IV.7.2	Cycles évanescents	259
	IV.7.3	Cohomologie à support compact	259
IV.8	Le forn	nalisme des faisceaux équivariants lisses	259
	IV.8.1	Hypothèses	259
	IV.8.2	G-faisceaux lisses	260
	IV.8.3	Les différentes opérations reliant G -faisceaux,	
		G-faisceaux lisses et faisceaux	261
	IV.8.4	Les G-faisceaux lisses forment un topos	266
	IV.8.5	Le théorème d'acyclicité	266
	IV.8.6	Faisceaux lisses sur une tour formée par un	
		pro-torseur	270
IV.9		ologie à support compact équivariante-lisse des analytiques de Berkovich	274
	espaces IV.9.1	Rappels sur les faisceaux mous sur le site étale	274
			214
	IV.9.2	Les quatre suites spectrales de cohomologie de Cech permettant de calculer la cohomologie à support compact	276
	IV.9.3	Ouverts distingués	278
	IV.9.4	Les sites quasi-étales, quasi-étales compacts et étales	281
	IV.9.5	Faisceaux équivariants lisses	282
	IV.9.6	Résolutions molles de Godement-Berkovich	285
	IV.9.7	Le complexe de cohomologie à support compact	200
	17.9.7	équivariant lisse	287
	IV.9.8	Le complexe de cohomologie équivariant lisse à support	
		dans un domaine analytique compact	287
	IV.9.9	Les opérations d'induction/restriction pour les faisceaux équivariants lisses	289
	IV.9.10	Les quatre résolutions/suites spectrales permettant	
		de calculer la cohomologie à support compact équivariante lisse	293

	17.10	des espaces rigides généralisés	295
	IV.11	Cohomologie à support compact équivariante-	
		lisse des tours d'espaces analytiques	301
		IV.11.1 Hypothèses et notations	301
		IV.11.2 Faisceaux de Hecke sur la tour	302
		IV.11.3 Le complexe de cohomologie à support compact	
		$\mathrm{de\ la\ tour}\ \ldots\ldots\ldots\ldots\ldots$	305
		IV.11.4 Objets cartésiens sur la tour et domaine fondamental	200
		pour l'action des correspondances de Hecke	306
		IV.11.5 Faisceaux cartésiens sur la tour et espaces de périodes	312
		IV.11.6 Résolution de Cech de la cohomologie de la tour	215
		par la cohomologie des cellules	$\frac{315}{315}$
	TV 10	IV.11.7 Rajout d'une donnée de descente Faisceaux de Hecke cartésiens et faisceaux rigides équivariants	310
	1 V . 1 Z	en niveau infini	316
		IV.12.1 Faisceaux lisses sur une tour	316
		IV.12.2 Principaux résultats	317
	IV.13	Application aux tours de Lubin-Tate et de Drinfeld	319
		IV.13.1 La correspondance de Jacquet-Langlands	
		locale géométrique	319
		IV.13.2 Comparaison des complexes de cohomologie	
		des deux tours	320
Bi	bliogra	aphie	321
			000
ln	dex .	• • • • • • • • • • • • • • • • • • • •	323
11	T.74	somorphisme des deux tours	
11		e autre approche en égales caractéristiques	
	par		
	•	_	
In	troduc	tion	329
Ι	Rapp	oels sur les deux tours et énoncé du théorème	
	I.1	Notations	331
	I.2	\mathcal{O} et \mathcal{O}_D -modules formels	332
	1.3	Tour de Lubin-Tate	333
	I.4	Tour de Drinfeld	335
	I.5	Enoncé du théorème	337

Table des matières xiii

П	Théo	prèmes de représentabilité explicites	
	II.1	Modules de coordonnées	41
	II.2	Côté Lubin-Tate	43
		II.2.1 Structures de niveau	45
		II.2.2 Action du groupe $\mathrm{GL}_d(K) \times D^{\times}$ et de la donnée	
		de descente	46
	II.3	Côté Drinfeld	18
		II.3.1 Structures de niveau	59
		II.3.2 Action du groupe $\operatorname{GL}_d(K) \times D^{\times}$ et de la donnée	
		de descente	31
		II.3.3 Le recouvrement mentionné en I.5, associé aux simplexes de l'immeuble de Bruhat-Tits de $\operatorname{PGL}_d(K)$ 36	33
II]	Tour	de Lubin-Tate et domaines fondamentaux	
	III.1	Décomposition cellulaire de la tour	35
	III.2	Le domaine fondamental	
			_
IV		action aux domaines fondamentaux	
	IV.1	Enoncé du théorème	1
	IV.2	Unicité de $\varphi_{P^{-\bullet}\mathcal{O}^d}$ et de ses localisés, équivariance	
		et recollement	′3
\mathbf{V}	Déme	onstration du théorème IV.1.1	
	V.1	L'anneau intermédiaire	79
		V.1.1 Etude de $A_{\mathcal{I}nt}$	30
		V.1.2 Intermède : le déterminant de Moore	31
		V.1.3 Fin de l'étude de $A_{\mathcal{I}nt}$	32
	V.2	Produit	3
		V.2.1 Le produit côté Lubin-Tate	3
		V.2.2 Le produit côté Drinfeld	35
	V.3	Décomposition	37
		V.3.1 Lemmes techniques	0
		V.3.2 Décomposition côté Lubin-Tate	14
		V.3.3 Décomposition côté Drinfeld	9
	V.4	Déterminants et structure de \mathcal{O} -algèbre sur $A_{\mathcal{I}nt}$ 40	3
	V.5	Démonstration de IV.1.1.2	5
Bil	oliogra	aphie	15