Representation Theory of Finite Group Extensions (eBook)

Clifford Theory, Mackey Obstruction, and the Orbit Method
eBook Download: PDF
2022
XIII, 340 Seiten
Springer International Publishing (Verlag)
978-3-031-13873-7 (ISBN)

Lese- und Medienproben

Representation Theory of Finite Group Extensions - Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This monograph adopts an operational and functional analytic approach to the following problem: given a short exact sequence (group extension) 1 ? N ? G ? H ? 1 of finite groups, describe the irreducible representations of G by means of the structure of the group extension. This problem has attracted many mathematicians, including I. Schur, A.H. Clifford, and G. Mackey and, more recently, M. Isaacs, B. Huppert, Y.G. Berkovich & E.M. Zhmud, and J.M.G. Fell & R.S. Doran.

The main topics are, on the one hand, Clifford Theory and the Little Group Method (of Mackey and Wigner) for induced representations, and, on the other hand, Kirillov's Orbit Method (for step-2 nilpotent groups of odd order) which establishes a natural and powerful correspondence between Lie rings and nilpotent groups. As an application, a detailed description is given of the representation theory of the alternating groups, of metacyclic, quaternionic, dihedral groups, and of the (finite) Heisenberg group.

The Little Group Method may be applied if and only if a suitable unitary 2-cocycle (the Mackey obstruction) is trivial. To overcome this obstacle, (unitary) projective representations are introduced and corresponding Mackey and Clifford theories are developed. The commutant of an induced representation and the relative Hecke algebra is also examined. Finally, there is a comprehensive exposition of the theory of projective representations for finite Abelian groups which is applied to obtain a complete description of the irreducible representations of finite metabelian groups of odd order.



Tullio Ceccherini-Silberstein obtained his BS in Mathematics (1990) from the University of Rome 'La Sapienza' and his PhD in Mathematics (1994) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Sannio (Benevento). He is an Editor of the EMS journal 'Groups, Geometry, and Dynamics' and of the Bulletin of the Iranian Mathematical Society. He has authored more than 90 research articles in Functional and Harmonic Analysis, Group Theory, Ergodic Theory and Dynamical Systems, and Theoretical Computer Science and has co-authored 9 monographs on Harmonic Analysis and Representation Theory and on Group Theory and Dynamical Systems. 

Fabio Scarabotti obtained his BS in Mathematics (1989) and his PhD in Mathematics (1994) from the University of Rome 'La Sapienza'.  Currently, he is professor of Mathematical Analysis at the University of Rome 'La Sapienza'. He has authored more than 40 research articles in Harmonic Analysis, Group Theory, Combinatorics, Ergodic Theory and Dynamical Systems, and Theoretical Computer Science and has co-authored 6 monographs on Harmonic Analysis and Representation Theory.

Filippo Tolli obtained his BS in Mathematics (1991) from the University of Rome 'La Sapienza' and his PhD in Mathematics (1996) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Roma Tre. He has authored more than 30 research articles in Harmonic Analysis, Group Theory, Combinatorics, Lie Groups and Partial Differential Equations and has co-authored 6 monographs on Harmonic Analysis and Representation Theory.

Erscheint lt. Verlag 29.11.2022
Reihe/Serie Springer Monographs in Mathematics
Springer Monographs in Mathematics
Zusatzinfo XIII, 340 p. 1 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Central Group Extension • character theory • Clifford Theory • cohomology of groups • finite group • Group extension • Hecke algebra • Heisenberg group • induced representation • Lie Ring • Little Group Method • Mackey Obstruction • Mackey Theory • Metabelian Group • nilpotent group • Orbit method • Projective representation • Schur multiplier • Unitary 2-cocycle • Unitary Representation
ISBN-10 3-031-13873-2 / 3031138732
ISBN-13 978-3-031-13873-7 / 9783031138737
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

OSZAR »