Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism
Seiten
2017
|
1st ed. 2016
Springer International Publishing (Hersteller)
978-3-319-50085-0 (ISBN)
Springer International Publishing (Hersteller)
978-3-319-50085-0 (ISBN)
This is the only book discussing multifractal properties of densities of stable superprocesses, containing latest achievements while also giving the reader a comprehensive picture of the state of the art in this area. It is a self-contained presentation of regularity properties of stable superprocesses and proofs of main results and can serve as an introductory text for a graduate course. There are many heuristic explanations of technically involved results and proofs and the reader can get a clear intuitive picture behind the results and techniques.
Introduction, main results and discussion.- Stochastic representation for X and description of the approach for determining regularity.- Some simple properties of (2;d;b )-superprocesses.- Analysis of jumps of superprocesses.- Dichotomy for densities.- Pointwise Hölder exponent at a given point: proof of Theorem 1.3.- Elements of the proof of Theorem 1.5 and Proposition 1.6.- A Estimates for the transition kernel of the one-dimensional Brownian motion.- B Probability inequalities for a spectrally positive stable process.- References.
Erscheint lt. Verlag | 3.1.2017 |
---|---|
Reihe/Serie | SpringerBriefs in Probability and Mathematical Statistics |
Zusatzinfo | VIII, 77 p. 2 illus. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Schlagworte | Hausdorff dimension • Holder Continuity • Local Unboundedness • multifractal spectrum • Stable Process • Superprocess |
ISBN-10 | 3-319-50085-6 / 3319500856 |
ISBN-13 | 978-3-319-50085-0 / 9783319500850 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |